skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gauthier, I"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 17, 2026
  2. 7T magnetic resonance imaging (MRI) has the potential to drive our understanding of human brain function through new contrast and enhanced resolution. Whole brain segmentation is a key neuroimaging technique that allows for region-by-region analysis of the brain. Segmentation is also an important preliminary step that provides spatial and volumetric information for running other neuroimaging pipelines. Spatially localized atlas network tiles (SLANT) is a popular 3D convolutional neural network (CNN) tool that breaks the whole brain segmentation task into localized sub-tasks. Each sub-task involves a specific spatial location handled by an independent 3D convolutional network to provide high resolution whole brain segmentation results. SLANT has been widely used to generate whole brain segmentations from structural scans acquired on 3T MRI. However, the use of SLANT for whole brain segmentation from structural 7T MRI scans has not been successful due to the inhomogeneous image contrast usually seen across the brain in 7T MRI. For instance, we demonstrate the mean percent difference of SLANT label volumes between a 3T scan-rescan is approximately 1.73%, whereas its 3T-7T scan-rescan counterpart has higher differences around 15.13%. Our approach to address this problem is to register the whole brain segmentation performed on 3T MRI to 7T MRI and use this information to finetune SLANT for structural 7T MRI. With the finetuned SLANT pipeline, we observe a lower mean relative difference in the label volumes of ~8.43% acquired from structural 7T MRI data. Dice similarity coefficient between SLANT segmentation on the 3T MRI scan and the after finetuning SLANT segmentation on the 7T MRI increased from 0.79 to 0.83 with p<0.01. These results suggest finetuning of SLANT is a viable solution for improving whole brain segmentation on high resolution 7T structural imaging. 
    more » « less
  3. null (Ed.)
    In recent work, the Vanderbilt Holistic Processing Tests for novel objects (VHPT-NOs), were used to show that holistic processing for artificial objects increased as a function of parametric variation of experience. Here, novices are tested on the VHPT-Nos to address two questions. First, does the test detect any level of holistic processing for novel objects in novices? Second, how is part matching performance on this test related to object recognition ability, as measured by the Novel Object Memory Test (NOMT)? In a high-powered study, we provide substantial evidence of no holistic processing on the VHPT-NO in novices, including for arguably facelike symmetrical Greebles. Evidence of no correlations between measures of holistic processing suggests that these indices can be considered free of influences from domain-general selective attention. In contrast, overall performance in part matching in the VHPT-NO shows shared variance across categories, which we postulate is related to object recognition. A second study provides direct evidence that part matching measures to a large extent the same ability as whole object learning on the NOMT. Our results suggest that any holistic processing measured in the VHPT-NOs will not be contaminated by domain-general effects and can be considered entirely due to experience with a category. The VHPT-NO will therefore be useful in further examination of how different aspects of experience contribute to the development of holistic processing. 
    more » « less
  4. null (Ed.)
    Holistic processing refers to the processing of objects as wholes rather than in a piecemeal, part-based fashion. Despite a suggested link between expertise and holistic processing, the role of experience in determining holistic processing of both faces and objects has been questioned. Here, we combine an individual differences approach with an experimental training study and parametrically manipulate experience with novel objects to examine the determinants of holistic processing. We also measure object-recognition ability. Our results show that although domain-general visual ability is a predictor of the ability to match object parts, it is the amount of experience people have individuating objects of a category that determines the extent to which they process new objects of this category in a holistic manner. This work highlights the benefits of dissociating the influences of domain-general ability and domain-specific experience, typically confounded in measures of performance or “expertise.” Our findings are consistent with those in recent work with faces showing that variability specific to experience is a better predictor of domain-specific effects than is variability in performance. We argue that individual differences in holistic processing arise from domain-specific experience and that these effects are related to similar effects of experience on other measures of selective attention. 
    more » « less
  5. Individual differences in expertise with non-face objects has been positively related to neural selectivity for these objects in several brain regions, including in the fusiform face area (FFA). Recently, we reported that FFA’s cortical thickness is also positively correlated with expertise for non-living objects, while FFA’s cortical thickness is negatively correlated with face recognition ability. These opposite relations between structure and visual abilities, obtained in the same subjects, were postulated to reflect the earlier experience with faces relative to cars, with different mechanisms of plasticity operating at these different developmental times. Here we predicted that variability for faces, presumably reflecting pruning, would be found selectively in deep cortical layers. In 13 men selected to vary in their performance with faces, we used ultra-high field imaging (7 Tesla), we localized the FFA functionally and collected and averaged 6 ultra-high resolution susceptibility weighed images (SWI). Voxel dimensions were 0.194x0.194x1.00mm, covering 20 slices with 0.1mm gap. Images were then processed by two operators blind to behavioral results to define the gray matter/white matter (deep) and gray matter/CSF (superficial) cortical boundaries. Internal boundaries between presumed deep, middle and superficial cortical layers were obtained with an automated method based on image intensities. We used an extensive battery of behavioral tests to quantify both face and object recognition ability. We replicate prior work with face and non-living object recognition predicting large and independent parts of the variance in cortical thickness of the right FFA, in different directions. We also find that face recognition is specifically predicted by the thickness of the deep cortical layers in FFA, whereas recognition of vehicles relates to the thickness of all cortical layers. Our results represent the most precise structural correlate of a behavioral ability to date, linking face recognition ability to a specific layer of a functionally-defined area. 
    more » « less